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Abstract

In this paper, we study leave-one-out style cross-validation bounds for kernel
methods. The essential element in our analysis is a bound on the parameter
estimation stability for regularized kernel formulations. Using this result, we
derive bounds on expected leave-one-out cross-validation errors, which lead to
expected generalization bounds for various kernel algorithms. In addition, we
also obtain variance bounds for leave-one-out errors. We apply our analysis to
some classification and regression problems, and compare them with previous
results.

1 Introduction

Kernel methods such as Gaussian processes for regression and support vector machines for
classification have become popular recently. Although in effect these methods may use
infinite dimensional features in the corresponding reproducing kernel Hilbert spaces (RKHS),
the kernel representation makes the computation feasible. An important aspect of kernel
methods is their good generalization abilities despite of their large underlying feature spaces.
This means that these learning methods can accurately predict outputs associated with
previously unobserved data.

A popular method to study such generalization ability is the so-called Vapnik-Chervonenkis
(VC) style analysis Vapnik (1998). This method depends on the uniform convergence of ob-
served errors of the hypothesis family to their true errors. The rate of uniform convergence
depends on an estimate of certain sample-dependent covering numbers (growth numbers) for
the underlying hypothesis family. More recently, other related techniques from the empirical
process theory have also been explored (for example, see van de Geer (2000); van der Vaart
and Wellner (1996)). Although this framework is quite general and powerful, they also have
various disadvantages. For example, the derived generalization bounds can be loose.

Because of various disadvantages of the VC-style analysis, other methods to estimate
generalization performance have been introduced. One interesting idea is to bound the
leave-one-out error of a learning algorithm. This is useful since if the training data are
independently drawn from a fixed underlying distribution, then the expected leave-one-out



error equals the expected test error, which can be used to measure the generalization ability
of the learning method.

Leave-one-out bounds have received much attention recently. For example, see Forster
and Warmuth (2000); Jaakkola and Haussler (1999); Joachims (2000); Kearns and Ron
(1999); Vapnik (1998) and references therein. Also in Jaakkola and Haussler (1999); Joachims
(2000); Vapnik (1998), the leave-one-out analysis has already been employed to study the
generalization ability of support vector classification.

In this paper, we extend their results by deriving a general leave-one-out bound for a
class of convex dual kernel learning machines and apply it to classification and regression
problems. We compare our bounds with some existing results. Part of this work has been
presented at the computational learning theory conference in 2001 Zhang (2001). The current
version is more detailed and contains a number of improved results.

We organize the paper as follows. In Section 2, we outline the relationship of the gen-
eralization ability of a learning algorithm and its leave-one-out error. The motivation of
leave-one-out analysis is then presented in the context of previous work. In Section 3, we
present the general kernel learning machine formulation and review the corresponding RKHS
representation. We then derive a general leave-one-out bound for the estimated parameter
that is the foundation of our analysis. This analysis is applied in Section 4 to formula-
tions with bounded sub-gradients. Section 5 and Section 6 contain additional results of this
analysis on some classification and regression problems. Concluding remarks are given in
Section 7.

2 Leave-one-out analysis and related works

In supervised learning, we want to predict an unobserved output value y based on an observed
input vector z. This requires us to estimate a functional relationship y & p(z) from a set
of training examples. Usually the quality of the predictor p(z) can be measured by a loss
function L(p(x),z,y). Our goal is to find p(x) so that the expected true loss (risk) of p
defined below is as small as possible:

Qr(p(-) = E.yL(p(z), z,y), (1)

where we use E,, to denote the expectation with respect to the true (but unknown) under-
lying distribution D.

We assume that the observed training data D, = {(x1,%1),---, (Zn,¥yn)} are indepen-
dently drawn from the unknown underlying distribution D. A learning algorithm is a proce-
dure A that takes the training samples D,, as the input and produces a predictor p = A(D,,)
as the output. The quality of a learning algorithm can be measured by the true risk Qr(p(-))
of the learned predictor. In the literature, the value Qr(p(-)) is often referred to as the gen-
eralization error (with respect to a loss function L). Clearly the generalization error Q,(p(:))
is a random variable that depends on the training data D,,, and a fundamental problem in
learning theory is to understand the behavior of this random variable for a learning algo-
rithm. In this paper, we are mostly interested in the expected generalization error

Qr(A,n) = Ep,Qr(p(-)) = Ep,Qr(A(Dn)), (2)



where the expectation Ep, is with respect to the training data D,,. Clearly this is a very
natural quantity that characterizes the performance of a learning method A.

Consider n + 1 samples D,,1 = {(z1,v1), .-, (Tni1,Yns+1)}. Let Dn+1 be the subset of
Dy, with the i-th datum removed:

DS—)H = {(351, y1), <e- 7($i—1ayi—1): ($i+17 Z/i+1); SRR ($n+1,yn+1)}-

Consider a learning algorithm A, and let p() = A(Dni +1) be the predictor obtained from this
algorithm based on Dn +1- Then the leave-one-out error on sample D, ; can be defined as:

n+1
1

ZL(-Aa Dn—|—1) = ? L(p(z)(xz) xzayz)

Taking expectation with respect to the n + 1 samples D,, .1, and observe that each sample
(xi,y;) is drawn from the same underlying distribution D, we obtain the following equality
for the expected leave-one-out error:

ZL(A, n—+ 1) :EDn+1ZL(A, Dn+1)

EDn+1 ( ()('TZ) xZ:yz)
Tn+1 —
1 n+l n+1
=1 2 Pon, G 00) Z@L (A7) = Qu(A,n).

That is, the expected generalization error equals the expected leave-one-out error (with one
more training sample). Therefore estimates of the leave-one-out error of an algorithm can be
used to bound its generalization performance. The purpose of this paper is to obtain such
bounds for kernel learning methods.

In the standard machine learning analysis, one often assumes that the predictor p is
taken from a hypothesis function class C' that models the relationship of the input = and the
output y. A frequently studied learning algorithm is the empirical risk minimization (ERM)
method, where we find a predictor in C' that minimizes the empirical risk:

p=A(D,) —argmf—ZL p(Ti), Tis Yi)- (3)

peCn

This formulation is related to a different form of penalized learning formulation often used
in practical computation. Assume C belongs to a large function space H (which is often
dense in the set of continuous functions), and is defined by the numerical constraint: C =
{p € H : r(p) < ¢}, where r : H — R is a functional called regularization condition. By
introducing a Lagrangian multiplier A, (> 0), we can rewrite (3) as

A(D,) = arg inf ZL p(2:), i, Yi) + A (D) | - (4)
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For kernel methods, H is a Hilbert function space (see Section 3) with norm || - ||, and
r(p) = 5lp()I1*

The purpose of this paper is to analyze kernel methods of the penalized form (4), and
our bounds will be specified in terms of the regularization parameter A,. Note that from a
theoretical point of view, (3) and (4) are not exactly the same since the theoretical analysis
of (3) usually assumes that C is fixed while the theoretical analysis of (4) usually assumes
that A, is fixed.

Kernel methods that are related to what we consider here have been studied both in non-
parametric statistics and in machine learning. We shall discuss related theoretical results as
well as the contribution of the current work.

One particular but very important kernel formulation is least squares regression where
L(p,z,y) = (p — y)?>. In machine learning, this method is also referred to as a Gaussian
process, which has a natural Bayesian interpretation. In statistics, this formulation often
appears as smoothing splines, which are standard non-parametric regression models Wahba
(1990).

Most theoretical results in non-parametric statistics are based on the non-penalized for-
mulation (3). Denote by AQr(A,n) = Qr(A,n)—inf,cc Qr(p), which measures how good a
learning algorithm (that chooses predictors from C') performs when compared to the best pos-
sible predictor in C'. One important concept is minimaz risk: if we know that the unknown
target function which minimizes the risk belongs to C', but the observation y is corrupted
with noise, then one can measure the quality of a learning algorithm using its worst case
AQr(A,n) value among all possible target functions in C; the minimax risk is then defined
as the lowest possible worst case AQr (A, n) value among all possible learning algorithms A.

In non-parametric statistics one is specifically interested in how fast the minimax risk
converges to zero as n — oo, and what algorithm achieves the fastest possible rate of
convergence. For the least squares loss, it turns out that under mild regularity conditions,
the optimal rate of convergence can be determined by the Lo-metric entropy H(C,¢€) of the
function class C (cf. Yang and Barron (1999) and reference therein).! Consider an Ly metric
d defined with respect to the input distribution as d(p;, p2) = Eglc/z(pl () — pa(z))?, then the
Lo-metric entropy H(C,€) is defined as the logarithm of the smallest number of Lo-balls (in
this d-metric) with radius e that can cover C.

Specifically, if the Lo-metric entropy of the function class is of the order e * (p > 0), then
the minimax risk of the optimal predictor converges to zero at a rate of the order n=2/(2+#) Tt
is also known that if p > 2 then ERM over the whole function class C as in (3) may converge
slower than the optimal minimax rate (and thus will be a suboptimal learning method),
see Birgé and Massart (1993). However when 0 < p < 2, by using the now standard proof
techniques (such as chaining and ratio uniform convergence inequalities) from the theory
of empirical processes, it can be shown that the empirical risk minimization method (3)
achieves the optimal minimax rate when some additional regularity conditions are satisfied.?
The details are not important for this paper and we refer the interested readers to Birgé

'For simplicity, we shall assume that both p(z) and y are bounded in this discussion.

2For example this is true when the uniform (or bracketing) entropy number (see van der
Vaart and Wellner (1996) Section 2.5 for definitions) has the same order of complexity as
the Ly, metric entropy. The differences among these definitions are technical and irrelevant



and Massart (1993); van de Geer (2000); van der Vaart and Wellner (1996). Since it can be
shown that the uniform metric entropy for kernel function classes do not grow faster than
€2, at least for the least squares method, it is possible to use the standard empirical process
theory to obtain convergence bounds for the ERM kernel formulation (3) that approximately
matches the optimal minimax rate.?

For example, a family of well-studied kernel function classes are 1-dimensional smoothing
splines on [0, 1]. Here the function class C' is a subset of r-th differentiable functions (r > 0.5):
C={p: fol [p") (x)]?dx < co}, where p{) denotes the r-th derivative of function p. It is known
that the uniform entropy number is of the order H(C,¢) = O(¢~'/"), leading to the minimax
rate of the order n=?"/"*1) which can be achieved using the empirical risk minimization
method.

In the learning theory literature, the empirical risk minimization method (3) for kernel
methods has recently been studied by a number of authors (for example Chucker and Samle
(2002); Evgeniou et al. (2000)). Many researchers are not fully aware of the recent devel-
opments in the statistical community mentioned above. Although these studies can lead to
useful insights, the obtained bounds are not necessarily tight, and often do not match the
correct minimax rates when applied to specific kernel formulations.

Although the empirical risk minimization method for (3) has been widely studied and
the minimax issue is well-understood, the behavior of the regularized learning formulation
(4) is less studied. From a technical point of view, the main difference is that in (4) we
would like to specify our learning bounds in terms of ), rather than through the restricted
function class C. However, the transition from (3) to (4) is not straight-forward.

For the penalized formulation (4), it is natural to compare the expected generalization
error QQr,(A,n) to the best possible risk inf,cy Qr(p) using predictors from H. Since the
predictor is taken from a very large function class H (often dense in the set of continuous
functions) with possibly co metric entropy number, the entropy-dependent lower bound in
the minimax analysis indicates that a direct empirical risk minimization over H will not
converge. The term A,r(p) is needed to stabilize the estimation process but it introduces an
explicit bias. Therefore bounds for (4) will contain both bias and learning complexity terms.
From the theoretical point of view, it is important to study the trade-off between the bias
and the learning complexity. For example, to obtain an estimator that is consistent, it is
necessary to allow the bias to converge to zero by choosing A, — 0 when n — co. However,
it is also necessary to make sure that A, — 0 at a relatively slow pace so that the learning
complexity vanishes in the limit (otherwise the method overfits the training data). Therefore
an important aspect of the analysis is to understand the behavior of the learning complexity
when A\, — 0.

Recently various stability based methods have been proposed to study the behavior of

to this paper. It is worth mentioning though, that for kernel methods, the uniform entropy
number is bounded, and (by definition) has the same order of complexity as the worst case

metric entropy.
3Although convergence rates for kernel methods obtained from empirical process tech-

niques are often relatively tight in terms of their dependency on the sample size n, they
almost always contain very bad constants. These bounds can also be loose relative to some
other factors such as function class size and noise size etc.



the penalized learning formulation (4) Bousquet and Elisseeff (2002); Kutin and Niyogi
(2002); Zhang (2002a). The underlying idea is closely related to the analysis of leave-one-
out error presented in this paper. Exponential type probability bounds can be obtained in
their analysis. Such exponential bounds give more detailed information than the expected
generalization error bound defined in (2) which we are interested in here. However one pays
a price with this generality since the expected generalization error implied from such an
analysis will be worse than results obtained here using the leave-one-out analysis.

As an example, we shall still consider the least squares regression problem. It was pointed
out in Zhang (2002a) that the bound given in Bousquet and Elisseeff (2002) was not tight,
where it was shown that a learning complexity term of the order O(1/4/A2n) in Bousquet
and Elisseeff (2002) can be improved to O(1/A\2n). It was further pointed out in Zhang
(2002a) that even the improved bound derived there (when averaged to obtain an expected
generalization error bound) does not match the corresponding expected generalization bound
using the leave-one-out analysis, where the learning complexity is of the order O(1/A,n) (see
Section 5). If the target function belongs to H, then we can choose )\, ~ n~'/2, and results
in Section 5 imply that the expected generalization error ()1, (A, n) converges to the risk of
the target function inf,cy Q1 (p) at a rate of the order O(n~1/2). This is clearly the best
kernel independent bound (in terms of n) one can obtain since it matches the minimax rate
of smoothing splines when the smoothing parameter » — 0.5. As a comparison, even with
the refined analysis in Zhang (2002a), one can only obtain a rate of the order O(n~'/3) by
setting A, ~ n~'/3. Similar conclusion also holds for other loss functions. See Section 4
and 5 for more detailed comparisons.

One question is whether this discrepancy is due to the suboptimal proof-techniques used
in the literature or it is due to something more fundamental. Although we do not have an
affirmative answer to this question, we think that the O(1/A2n) behavior for the probability
bounds might not be improvable. One may notice that the leave-one-out variance bounds
given in Section 3 and 4 also have this O(1/)\2n) behavior. In addition to this worse behavior
in terms of the regularization parameter ),, probability bounds such as those in Bousquet
and Elisseeff (2002); Kutin and Niyogi (2002); Zhang (2002a) often require the loss function
to be bounded. Again similar conditions are needed in the leave-one-out variance analysis
presented in Section 3 and 4. As a comparison, this restriction is not necessary in the
leave-one-out expected generalization analysis.

Based on the above discussion, it is clear that the leave-one-out expected generalization
error analysis is very useful for understanding the behavior of the penalized kernel learning
formulation (4) which is widely used in practice. In fact it is possible to obtain tight ex-
pected generalization bounds both for the kernel dependent case (where we need to use the
eigen-decomposition structure of the underlying kernel) and for the kernel independent case.
However, in order to focus on the main underlying methodology, we shall only consider the
kernel independent case in this paper.



3 Kernel learning machines and leave-one-out approx-
imation bound

3.1 Kernel representation

The goal of many machine learning problems is to find a function that can predict the
output variable y based on the input variable z. Typically, one needs to restrict the size of
the hypothesis function family so that a stable estimate within the function family can be
obtained from a finite number of samples. Let the training samples be (z1,41),--- , (Tn, Yn)-
We assume that the hypothesis function family that predicts y based on x can be specified
with the following kernel method:

pla,z) = Z o; K (z;, ), (5)

where « = [a;]i=1,.. » is @ parameter vector that needs to be estimated from the data. K
is a symmetric positive kernel. That is, K(a,b) = K(b,a), and the n x n Gram matrix
G = [K(xi,z;)]ij=1,. n is always positive semi-definite.

Definition 3.1 Let Hy = {Zle a;K(z;,x): £ € N,y € R}. Hy is an inner product space
with norm defined as

132 ek (i)l = (3 o K (s, ;) 2

Let H be the closure of Hy under the norm || - ||, which forms a Hilbert space, called the
reproducing kernel Hilbert space of K.

It is well-known and not difficult to check that the norm || - || in Definition 3.1 is
well-defined, and it defines an inner product. Consider two functions in Hy: pi(z) =
> iy il (i, x) and py(z) = 377, B;K (2}, 2). The inner product can be expressed as:

n m
pLop =) ) i (@i 7))B;
i=1 j=1

Now assume that p;(-) L pa(-) where py(x) = K (2}, ), then

O0=p1-p2= ZO@K(%‘J;‘) = pl(ﬂﬁ;)-
i=1

Clearly by taking limit, we know that this property also holds for all p; € H. We thus obtain
the following well known property for reproducing kernel Hilbert spaces:

Proposition 3.1 Let p(z) € H. Consider the projection po(x) of p(x) onto the subspace
spanned by functions p;(x) = K(z;,z) (i = 1,...,n). Then po(z;) = p(x;) for all i =
1,...,n.



In the recent machine learning literature, kernel representation (5) has frequently been
discussed under the assumptions of the Mercer’s theorem, which gives a feature space repre-
sentation of H (for example, see Cristianini and Shawe-Taylor (2000), chapter 3). Here we
represent each input vector = as a possibly infinite dimensional feature vector [¢;(z)];=1,....
The kernel becomes K (z1,79) = D 7~ ¢;(21)¢;(72) and a function p € H can be represented

as p(-) = Y22, wig;(-) where [[p]| = (3252, w?)'/?. Although this representation provides
useful insights, it is not technically essential for the purpose of this paper. We take a more
general approach that only relies on simple properties of a positive symmetric kernel function
K without considering the eigen-decomposition structure of any specific kernel.

In some practical kernel learning formulations, a bias term may be included in (5), where
the corresponding function space H' has the form p(a,z) +b = > " oK (2;,z) + b. It is
well-known that H' can be considered as the reproducing kernel Hilbert space with kernel
K'(z1,29) = K(z1,29) + 1. It is easier to see this using the feature-space representation:
K'(x1,20) = 1+ 2, ¢i(x1)di(x2), and hence any function in the reproducing kernel Hilbert
space of K’ has the form p(-) = >°°°, w;¢;(+) + b, with its norm defined as (350, w2 +1)'/2.
Therefore from the learning point of view, we don’t lose any representation power by only
considering a kernel representation without an explicit bias term. We shall mention that
by treating H' as the reproducing kernel Hilbert space of a different kernel, the resulting
learning formulations may be slightly different from those in the literature where the bias
b is typically not included in the penalization term. The explicit bias formulation will
significantly complicate the derivation in the leave-one-out analysis framework, though it is
still possible to handle it. Since an explicit bias formulation does not have any advantage
in approximation power, for simplicity and clarity, we shall focus on the representation (5)
without the bias term.

Functions in H can be used to approximate an arbitrary function p(z). However only
certain functions can be well approximated while others cannot. Therefore it is useful to
define a metric that characterizes how well a certain function can be approximated. In
particular, given a sequence of observations X,, = {x1,...,2,}, we can approximate p(z)
by using functions in H that match the values of p(z) at X,,. There can be many possible
such function interpolations (assume one exists). Therefore a natural choice is to select the
minimum ||-||-norm interpolation of p(-). The corresponding norm can be used to measure the
cost of interpolating p(z) at X,, using functions in H. This leads to the following definition:

Definition 3.2 Denote by X,, a sequence of samples x1, ... ,z,. We use G(X,) to denote
the Gram matriz [K(z;, z;)]i j=1,. n-
For any function p(z) and symmetric positive kernel K, we define

|lp(X,)|| = inf {400} U {s > 0 : Va, p(X,)Ta < s(aTG(Xn)a)1/2},

where o denotes an n-dimensional vector. We use the convention that +00 X 0 = +00 in
the definition.
We also define ||p(x)||jn) = supx, ||p(Xn)||, where X, consists of a sequence of n samples.

The following property is useful. It shows that p(X,) can be considered as an interpo-
lation of p(@,-) € H, and ||p(X,)|| = ||p(@,-)||. Proposition 3.3 implies that for any such

8



interpolation function ¢ € H, ||p(X,)| < ||¢||- Therefore the quantity ||p(X,)|| can be re-
garded as the norm corresponding to the minimum || - ||-norm interpolation of p(-) using
functions in H. The proofs are left to Appendix A.

Proposition 3.2 Let K be a symmetric positive kernel, and consider samples X, = {z1,... ,z,}.
For any function p(x), the following two situations may happen:

o p(X,) is not in the range of the Gram matriz G(X,): ||p(X,)|| = +oo.
o p(X,) can be represented as p(X,) = G(X,)a: ||p(X.)| = (@7G(X,)a&)'/2.
In particular, if G(X,) is non-singular, then ||p(X,)|| = (p(X,)TG(X,) 'p(X,))/2.

Proposition 3.3 Let K be a symmetric positive kernel, then ¥p(z) € H,

PO llmy < G-

This tmplies that Vx:

p(@)| < lIpC)IK (2, 2)"2.

We will later show that the quantity ||p(-)||f) characterizes the learning property of using
the kernel representation (5) to approximate a target function p(z). In fact, our learning
bounds containing this quantity directly yield general approximation bounds, as shown at the
end of Section 5. This is also a new quantity that has not been considered in the traditional
approximation literature. For example, the approximation property of kernel representation
is typically studied using standard analytical techniques such as Fourier analysis (see Mhaskar
et al. (1999); Wendland (1998) and references therein). Such results usually depend on many
rather complicated quantities as well as the data dimensionality. Compared with these
previous results, our bounds using ||p(x)||j, are simpler to express and are more generally
applicable. However, we do not discuss specific approximation consequences of our analysis,
but rather concentrate on the general learning aspect.

When the target function p is not in H, we do not give conditions to bound ||p||j,;. This
quantity can be bounded using estimates of ||p(X,)||, and such estimates may be obtained
using techniques in approximation theory for analyzing the stability of G(X,,). The stability
of the system can be measured by the condition number of G(X,) (in 2-norm) or the 2-
norm of G(X,)~!. See Narcowich et al. (1998) and references there-in for related analysis.
The quantity |[p(X,,)|| is clearly related to the 2-norm of G(X,,)™" (the latter gives an upper
bound) which measures the stability. However, the stability concept as used in approximation
theory only has numerical consequences but no consequence in approximation rate or learning
accuracy. On the other hand, the quantity ||p(z)||;,) determines the rate of approximation
(or learning) when the kernel representation (5) is used. Although it is a well-known fact
that the norm of G(X,) ! degrades as the number of samples increases, one may introduce
smoothness conditions on p so that ||p(x)||,) behaves nicely for a wide range of function
families.



3.2 Duality and leave-one-out approximation bound for kernel
machines

We consider the following general formulation of dual kernel learning machines that can be
used to estimate p(a, -) in (5) from the training data:

n 1 n n
& = arg main Zg(—ai, Ti, ¥i) + 3 Z Z ;o K (i, x5) | (6)
i=1

i=1 j=1

We assume that g(a, b, ¢) is a convex function of a. For simplicity, we require that a solution
of (6) exists, but not necessarily unique.

In order to treat classification and regression under the same general framework, we shall
consider convex functions from the general convex analysis point of view, as in Rockafellar
(1970). Especially we allow a convex function to take the +oo value which is equivalent to
a constraint.

Consider a convex function p(u) : R* — R*, where R is the real line, and R* denotes the
extended real line R U {4+00}. However, we assume that convex functions do not achieve
—oo. We also assume that any convex function p(u) in this paper contains at least one
point ug such that p(ug) < 4+o00. Convex functions that satisfy these conditions are called
proper convex functions. This definition is very general: virtually all practically interesting
convex functions are proper. We only consider closed convex functions. That is, Yu, p(u) =
lim, o+ inf{p(v) : ||v — u|| < €}. This condition essentially means that the convex set above
the graph of u: {(u,y) : y > p(u)} is closed.

In this paper, we use Vp(u) to denote a subgradient of a convex function p at u, which is
a vector that satisfies the following condition:

V', p(u') > p(u) + Vp(u)" (0 —u).

The set of all subgradients of p at u is called the subdifferential of p at u and is denoted by

Op(u).
Denote by L, («) the objective function in (6):

Lu(e) =) g(—0i,zi, 4:) + % D> oK (i, z)).
=1

=1 j=1

In this paper, we assume that (6) has a solution with a finite objective value. However,
we do not assume that the solution is unique. The following proposition gives a sufficient
condition for the existence of such a solution. All examples given in this paper will satisfy
the condition.

Proposition 3.4 Assume that for all (z;,v;), 9oy, z;,y:) is a (proper) closed conver func-
tion in ;. If im,, 100 9(0y, 23, y;) = 400 for all i, then (6) has a solution with finite
value.

Proof. Given @ such that g(@;, i, y:) < +0o, the region I'y; = {a € R" : L,(a) < L, (&)}
is bounded in R". Since solving (6) in R™ is equivalent to solving (6) in I's, we can find
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a sequence of o/ € Iy such that L,(a?) — inf, L,(a). Since L, is the sum of closed
convex functions, it is also closed. By definition, let & be a limiting point of o/, we have
L,(&) =inf, L,(a). O

In the following, we introduce a convex duality of (6), which becomes useful in our later
discussions. For function g(u, b, ¢) in (6), we define its dual with respect to the first parameter
as

f(v,b,¢) =n-sup[uv — g(u,b,c)].

Given f, g can be obtained as:

v

g(u, b, ) = sup [uv - % Fv,b, c):| | (7)

We consider the following primal learning formulation in the corresponding reproducing
kernel Hilbert space of K:

() = arg min [an (1), 21,) %np(-)w]. ®

-JEH

Note that this formulation has a penalized empirical risk minimization form as in (4). We
want to prove that (8) and (6) are equivalent. This is given by the following strong duality
theorem (its special situation appeared in Jaakkola and Haussler (1999)). The proof is left
to Appendix B.

Theorem 3.1 Any solution of (8) can be written as p(xz) = Y., &K (i, z) for some a.
For any solution & of (6), the function p(&,x) =Y i, &K (x;, ) is a solution of the primal
optimization problem (8). The converse is also true if the Gram matriz G(X,) is non-
singular.

Note that the proof of Theorem 3.1 also implies that even when G(X,) is singular, a
solution p(z) of (8) can still be written as p(&,x) where & is a solution of (6). In addition,
the sum of the optimal values of (8) and (6) is zero (for example, see Zhang (2002b)).
However this fact is not important in this paper.

We may now introduce the following leave-one-out approximation bound for kernel meth-
ods, which forms the foundation of our analysis. The proof is given in Appendix C.

Lemma 3.1 Consider training set D, = {(z1,y1),---,(Tn,yn)}. Let & be the solution of
(6), and let 6I¥] be the solution of (6) with the k-th datum (xy,yx) removed from the training
set D, then

lp(@, ) = p(a*, )| < Jée| K (ax, zx) /.
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3.3 Leave-one-out error and variance for kernel learning machines

As shown in Section 2, a useful aspect of leave-one-out analysis is that the expected leave-
one-out error of a learning algorithm equals its expected generalization error. However the
training error of a learner may not be closely related to its generalization error. It is thus
interesting to compare the leave-one-out error to the training error. If the two are close, then
we know that the expected generalization error is close to the expected training error. If the
learner is obtained by approximately minimizing its training error, then we know that the
expected generalization error is also approximately minimized. The goal of this section is to
bound the leave-one-out error of a kernel learning machine in terms of its training error.

We use notations introduced in Section 2. Here we use Ax to denote the dual kernel
learning method (6) (or equivalently, its primal learning formulation (8). Zr(Ag, D,,) is used
to denote the leave-one-out error with respect to the training samples D,, of size n.

Definition 3.3 Let L(p, z,y) be an arbitrary loss function, we define

ALs(p,z,y) = ‘8}1135 L(p+t,x,y) — L(p,z,y),
t[<
Ay Ls(p, z,y) = ‘8}11()5 \L(p+1t,z,y) — L(p, =, y)|.
1<

Using Lemma 3.1, we can easily obtain the following general leave-one-out bound. We will
study the consequence of this bound in regression and classification in subsequent sections.

Theorem 3.2 Under the assumptions of Lemma 8.1. Let L(p,z,y) be an arbitrary loss
function, and Zp(Agk,Dy) be the corresponding leave-one-out cross-validation error with
respect to L(p,z,y):

1 < R
ZL(AK:DR) = EZL(p(a[k]’mk)amkayk:)‘
k=1

Then

n

nZL(AKaDn) S L(p(&axk)axkayk) +ZAL5k(p(da xk)axkayk))’ (9)
k=1 k=1

where 0 = || K (zg, k).

Proof. Using Lemma 3.1 and Proposition 3.3, we obtain |p(&*!, z;) — p(&, z1)| < 6. This
implies that

L(p(&[k]a $k)7 Lk, yk) S L(p(&a xk)a Lk, yk) + AL5k (p(&a xk)a Lk, yk)

Summing over k, we obtain the theorem. O

Although the expected leave-one-out error is the expected generalization error, the former
may not be a stable estimator of the latter. To see this, we consider the following example:
assume that the input is a 0-1 valued binary random variable with probability of 0.7 for
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0 and 0.3 for 1, and the output is always 1. Given n such input-output pairs, the leaner
predicts 1 if an even number of inputs are ones, and predicts 0 otherwise. Clearly depending
on whether the number of observed ones are even or odd, the leave-one-out classification
error rate for the learner will be approximately 0.7 or 0.3. The expected classification error
of this learner will be approximately 0.5. This implies that the leave-one-out classification
error is not a stable estimator even when n — +4o0.

It is thus useful to bound the variance of leave-one-out estimate. In order to do so
for kernel learning machines, we use the following modified version of Efron-Stein style
concentration inequality Efron and Stein (1981); Steele (1986). A self-contained proof is
given in Appendix D.

Lemma 3.2 Let Z be an arbitrary function of the training data: Z = u(z1,...,2,), and
let Z% be a fized function of the training data with z excluded (i = 1,...,n): Z® =
uD (21, ..., 21, Zig1s - - 5 Zn), Where z; = (2i,y;). Then the variance of Z can be bounded
as:

Var(Z) < E Zn:(z ALK

where the expectation (and variance) is with respect to the training data.

Note that the choice of u( that minimizes the right hand side of Lemma 3.2 is the
expectation of u with respect to the i-th component: E, u(z1,... ,2z,).

Clearly, if we let Z(Ak, D,,) be the leave-one-out error, and Zj(f) (Ak, D,,) be the leave-
one-out error with the i-th datum removed from the training data, then the variance of
Z1,(Ak, D,,) can be bounded by the right hand side of Lemma 3.2. For kernel machines, the
latter can be bounded using the following result:

Theorem 3.3 Let.ZL(AK, n) be the leave one-out error on training set D, as in Theo-
rem 3.2, and let Zg) (A, D) = Z(Ak, D ) be the corresponding leave-one-out error with
the i-th datum removed from the training data. We have the following inequality

n

S [0 Zu(Ak, D) = (n— 1) 20 Ak )|

=1

<(2n—1) [ ZL )iy + Y AL, (p(6, 23), 74, 43) |

0,717 ]
where §; j = |a |K(x,, )Y2K (x4, )2 for all i # j.

Proof. Let Z = nZy(Ak,D,) and Z® = (n — 1) Z%(Ak, D,). For all i # j, denote
by &9 the solution of (6) with both the i-th and the j-th data points removed from the
training set. Given any j, using Lemma 3.1 and Proposition 3.3, we have for all i # j:
ip(a1] z;) — p(&"9), ;)| < 4; ;. Therefore

|L(p(&d", ), i, yi) — L(p(&"7), 2;), 23, 33)| < Ay Ls, (p(&", z;), 25, i)

13



Summing over i(i # j), we obtain:

(Z — L(p(d[] Tj ) %ayj J)| < ZAHL&] all xz) Ti, Yi)-
1£]

We thus obtain:
(Z — Z(j))2

2
< _‘L( ( x]) T, Yj ‘+ ZAHL(S’LJ( (amami)amiayi)]

]

1 »
<(2n—1) !n - (;L(p(am T, Y5))° + Z A Ls,, (p(al, zy), $i,yi)2] :
GiF]

Now the theorem can be obtained by summing over j. O

4 Leave-one-out analysis for bounded sub-gradient for-
mulations

It is clear that Theorem 3.2 can be used to bound leave-one-out errors in terms of training
errors. If each ¢y is small (k= 1,...,n), and the loss is continuous, then the corresponding
leave-one-out error is not much larger than the training error. Since the expected leave-one-
out error is the expected generalization error, we know that the expected generalization error
is not much larger than the expected error on the training set. Similarly one can obtain a
bound on the variance of leave-one-out error using Theorem 3.3.

In order to apply (9), we need to estimate &. Although this quantity is available if we
solve the kernel formulation (6) based on the training data, it is also very useful to estimate
the quantity for all possible training data based on properties of the underlying learning
formulation. Such an estimate can be used to derive a bound for the expected generalization
error. This section considers a relatively simple situation. From (25), we know that if
sup |V1f(p,x,y)| is bounded, then each component & is of the order O(1/n). Similarly, if
L(p, z,y) is Lipschitz, then L(p(&!¥], z), z,y) — L(p(&, ), z,y) can be bounded accordingly.

For some problems, it is useful to limit the range of p(&,-) and p(&*¥l,-). Let p be a
measurable function, and let k, = (2sup,,, f(p(2),2,y) + [[p(-)|[},)"/*. Note that we allow
kp to be +00. Now if f is non -negative, then by comparing the primal empirical risks, we
obtain ||p(&, )|| < Ky, |lp(&11,)|| < &, for all i, and ||p(al™, -)|| < &, for all i # j. Thus
Ip(&, z)], [p(al, z)|, |p(al™], )| < kpK(z,2)'/?. Based on thls observation, we obtain the
following result.

Theorem 4.1 Under the assumptions of Theorem 3.3. Let

1/2

!y

M zsupK(x,x)1/2,
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where we allow both quantities to be +oo. We further assume that f(p,z,y) is non-negative
when kM < +oo. Let

Mf = sup Vlf(p’xay)a

[p|<kM,zy

ML: sup |L(p1)a:7y)_L(pQ:xay)‘”pl_pQ‘a
[p1],lp2|<kM 2,y

U= sup |L(p(z),z,y)|

[p|<k M3y

Given training data D, let Ax = MLan Y p_y K(zg, x). We have the following inequalities:

1 ) A
Z1(Ax, Dy) < > L(p(6r, zk), Tk, yi) + 7)( (10)
k=1
n n—1 ) 2 ) [2/ 2 n
> [ZL(AK,Dn) - Zg)(AK,Dn)] < S|+ A% - —5 INT K(zy,z)?] . (11)
=1 k=1

Proof. The definition of x implies that ||p(«, )| < &k for all p(«,-) that solves (8) with
m-points removed from the training set (m = 0,1,2). Hence |p(a, z)| < kM. This implies
that we can replace L(p,z,y) by L(max(min(p,xM),—xM),z,y) in the proof. This new L
has a global Lipschitz constant of My. Therefore A\ Ls(p,z,y) < Mpé. Using (25) we also

obtain |d| < f for all training data. Let &y = |G| K (zk, zx), then
MMy

ALs, (p(&, k), Tk, Yr) < (zg, T)-

Sum over k£ and apply Theorem 3.2, we obtain (10).
Similarly, let 6; ; = \&BZ”K(:UZ-, z;)?K (x;,2;)'/2. We have

MMy,

AHL(;” (p(OA‘[Z]: xi)7 Zj, yj) < K(xla xi)l/QK(x]" xj)l/Z‘

Summing over i, j(i # j), we obtain

2aq2 N
MMf

ZK (zk, z1)?

> AyLs, (p(61, ), z5,,) < A%

(BE]

Using Theorem 3.3, we obtain (11). O
Note that if kKM = +o0, then the condition |p| < 400 in the definitions of My, M}, and
U, can be interpreted as |p| < +oo.

Corollary 4.1 Under the assumptions of Theorem 4.1. If E K(x,x) < +o0, then
MM,

i R
EZL(-AK: Dn) SE - ZL(p(a:xk)axkayk) +
k=1

Var(Zu(Ax, D)) <-[U} + (M; My (B K (2,2,

E K(z,z),

where the expectation (variance) is with respect to the training data D,,.
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Proof. Taking expectation with respect to the training samples in (10) leads to the first
inequality. Now, note that

E A% =(MyM;)? [(E K(z,7))* + %VarK(x, m)}

n

<(My,Mjy)? [(E K(z,z))* + g K(z, ac)Z] :

Taking expectation over the training samples in (11) and recall Lemma 3.2, we obtain the
second inequality. O

We have shown that if both M; and M, are bounded, then the expected generalization
error is at most O(1/n) more than that of the expected training error. Furthermore, if L
is bounded, then the variance of the leave-one-out estimate is O(1/n). Let L'(p,z,y) >
L(p,x,y) be an upper bound of the loss which is convex in p. In the following, we choose f
such that

f(p,z,y) = ol (p,z,y),

where ¢, is a regularization parameter. Note that this is equivalent to the penalized formu-
lation (4) with A, = 1/c,. Since p(&, -) solves (8), we can obtain from Corollary 4.1

2
cenMi,
n

. 1
EZp(Ak,Dn) < inf EL(p,v,y)+ g”p(-)llfn] + E K(z,). (12)

¢
Clearly this implies that if we choose ¢, = o(n) such that ¢, — oo, then as n — oo the
expected generalization error with respect to the L'-loss will be no more than the best
approachable L'-loss in H: inf,ey E L' (p, z,y).
Consider a non-negative loss L'. If we let L = min(L’, U) for some U > 0, then it is clear
that in addition to (12) we also have

Var(Z,(Ax, Dy)) < % [U? + M} (E K(z,2))?] . (13)

This shows that if we want the variance of leave-one-out error to approach zero as n — oo,
¢n has to be chosen such that ¢, = o(y/n). Clearly this condition is more restrictive than
the requirement of ¢, = o(n) in (12). This also implies that if we choose a large ¢,, then
the variance of the leave-one-out error can be large even when the expected generalization
of the estimated predictor using kernel learning is not much worse than that of the optimal
predictor.

Analysis in this section can be useful for certain robust regression and classification
formulations. For regression, we consider the following two scenarios:

e Absolute deviation: L(p, z,y) = min(L'(p,y),U) where

L'(p,y) = |p—yl-
Let M, = sup, |y|, then we may set x = (2¢,M,)"/?, and have

My <cn, My<1, Up,<min((2¢,M,)"*M + M,,U).
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e Huber’s robust loss: L(p, z,y) = min(L'(p,y), U) where
—y|l—1 —y| > 2
' (p,y) = Ilp Yl 2 p—yl>2
o=y Ip-yl<2
Let M, = sup, |y[, then we may set s = (2¢,M,)"/?, and have

My <cn, My<1, Up<min((2¢,M,)">M + M,,U).

We can also consider binary classification problems with labels y = £1. The decision
rule is to predict y as 1 if p(z) > 0 and —1 if p(z) < 0. We define the classification error
function of this prediction as:

0 py>0,
I(p,y)={1 py <0

Our goal is thus to produce a predictor p(z) such that p(x) and y has the same sign. We
consider the following two widely used formulations. Instead of using classification error as
the loss, we consider losses that are upper bounds of classification error (up to a scale factor).

e Logistic regression: L(p, z,y) = min(L'(p,y),U) where

L'(p,y) = In(1 + exp(—py)).

1/2

We may set k = (2¢, In2)'/?, and have

My <e¢,, My<1, Up<min((2¢,In2)"?M +1n2,U).
e SVM loss: L(p, z,y) = min(L'(p,y), U) where
L'(p,y) = max(0,1 — py).

1/2

We may set k = (2¢,)'/?, and have

My <e¢,, My <1, Up<min((2¢,)"*M +1,U).

e Modified Huber’s loss: L(p,x,y) = min(L'(p,y),U) where

—py py < —1,
L'(p,y) = :1(1—py)* pye[-1,1],
0 py > 1.

We may set &k = (c,/2)"/2, and have

My <cp, Mp<1, Up,<min((c,/2)"?M +1/2,U).
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We’d like to mention that the modified Huber’s loss has certain advantages over the standard
SVM loss, and hence is interesting by itself Zhang (2002c). However the specific theoretical
motivation is not important for the purpose of this paper. Clearly for all of the above cases
My, = 1. The analysis in this section can thus be applied. From (12) and (13), we obtain
the following result:

Corollary 4.2 Consider absolute deviation or Huber’s robust loss for regression, and logistic
regression, SVM, or Modified Huber’s loss for classification. If we choose f as f(p,x,y) =
cn L' (p,y) and solve the corresponding learning problem (6) with g(p, z,y) given by (7). Then
the following leave-one-out bounds are valid:

: 1 Cn
E Z1:(Ak, Dy) < })I(lg E L'(p(z),y) + §||p()||[2n] - EE K(z,x),

Var(Zy(Ax, D) <2 [V} + (B K(z,2))],

where p(-) is an arbitrary measurable function.

If we restrict p(-) to be in H, then ||p()||[2n] can be replaced by ||p||?. Since we can choose

2¢,1/(0,0,1) for the above classification formulations, we can let L(p,z,y) = L'(p,y)
and set Uz, = L'(—4/2¢,L'(0,0, 1) sup, K (z,7),0,1) in the above variance bound.
Note that ¢, in the above lemma is equivalent to 1/A, under the penalized formulation
(4). Therefore using notations from Section 2, the expected generalization error can be
bounded as:

A 1

(Ag,n —1) < inf A(p) + Z2pll?| + O . 14

QulAwin =1 < inf [Qu(o) + F10l7] +0 (51 (1)

The second term on the right hand side is the bias term mentioned in Section 2, and the

third term is the learning complexity term. As a comparison, the leave-one-out variance

2

term is of the order O(% + A%Ln), which is usually much larger since typically we require that
A, — 0 as n — oo.

As mentioned in Section 2, this order O(/\zl—n) learning complexity behavior is also pre-
sented in the algorithmic stability based approach such as Bousquet and Elisseeff (2002).
For example, typical bounds obtained there (such as those for SVM and least squares) in
Bousquet and Elisseeff (2002) are of the following form (when adapted to our notations):

with probability of 1 — n over training data D,,, we have
1 —In(n)
o) o, 2m).

where the O(-) notation also depends on Uj,. Taking expectation with respect to the training
data, we obtain the following expected generalization bound from their analysis:

. 1 & ! A'IL
Qr(Ak, Dy) < inf [— > U(p(i), zi,y:) + 7“10”2

cH |n
P i—1

An 1 1
Q) < inf [Qu) + o] +0 (5 +0 ( A%n) D)
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Clearly similar to our leave-one-out variance bound, the O(1/\%n) learning complexity be-
havior is also present in their analysis.

Consider now for example that the value inf,cy Qr/(p) can be achieved at p* € H:
Qr (p*) = inf,cg Qr (p). In this case, our analysis implies Qr/ (Agx,n) < Qu (p*) + O(\,) +
O(55)- Now by choosing A, = O(1/y/n), we obtain Qr/(Ax,n) < Qr(p*)+0(1/y/n). Note

that the leave-one-out variance bound is of the order O(UTz +1), which does not even converge
to zero as n — oco. The analysis in Bousquet and Elisseeff (2002) has the same issue. The
best convergence rate from (15) is obtained by setting A\, = n~'/, and the resulting bound
becomes Qr (Ax,n) < Qr (p*)+O(n~*). If we consider the effect of Uy, dependency in the
O(-) notation, the best possible rate of convergence from their analysis can be even slower.

We are not trying to criticize the algorithmic stability based analysis such as Bousquet
and Elisseeff (2002). As we mentioned earlier, such analysis leads to probability bounds
that provide more detailed information than expected generalization bounds presented in
this paper. However, it is important to see that their analysis does not lead to the correct
expected generalization error bounds, and we do not know an easy fix. In this regard,
the leave-one-out analysis presented in this paper is useful since it does not suffer from
this problem. However a disadvantage of the leave-one-out analysis is that it only leads to
expected generalization bounds.

Another interesting classification formulation is exponential loss where we let f(p, z,y) =
¢n €xp(—py). This function is used in boosting but can also be combined with kernel methods.

Corollary 4.3 Consider loss function L(p,x,y) = exp(—py) and choose the corresponding
fin (8) as f(p,x,vy) = cnexp(—py). Let M = sup, K(z,)'/?, then the leave-one-out error
satisfies:

¢, exp(v/8¢, M) B K(z,2)
n Y 7

. 1

Var(Z(Axk, D,)) g% [exp(v8c, M) + ¢, exp(v/32¢, M) (E K (z,z))?]

where p(-) is an arbitrary measurable function.

Proof. Consider p = 0, which leads to a choice of k = \/2¢,,. We can now apply Corollary 4.1
with My = ¢, exp(v/2¢,M), and M, = U;, = exp(v/2¢,M). O

Although the analysis given in this section appears to be relatively general in the sense
that it can be used to study any kernel learning problems with bounded M; and M. How-
ever for many problems (such as least squares regression), My, and My may depend on the
regularization parameter c,. In such cases, the analysis given in this section can be subopti-
mal. It is thus necessary to estimate the behavior of & using more elaborated methods. This
in general requires us to obtain a metric that measures the size of & based on some observ-
able quantities. Although any quantity can be used, we will specifically consider bounding
& through the optimal training risk of the primal objective function (8). The advantage of
using this quantity is that it is directly optimized by the kernel learning algorithm. Therefore
we can bound its value using an arbitrary function p € H (the idea has already been used
in this section). We will apply this method to specific learning problems in regression and
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classification in the next two sections. Although for those problems variance estimates can
also be obtained, they will be of rather complicated forms. Therefore for simplicity we do
not include the corresponding variance calculations.

5 Leave-one-out analysis for some regression formula-
tions

In this section, we study some regression formulations. We define
De(p,y) = max(|p — y| — €,0)
for all € > 0. In Theorem 3.2, let
L(p,z,y) = De(p,y)’, (1< s <+400)

which is a generalized version of Vapnik’s e-insensitive regression loss Vapnik (1998). For
regression problems, our goal is to find a function p(z) to minimize the expected loss

Q(p()) = E(x,y)De(p(x)7 y)s,

where E denotes the expectation with respect to an unknown distribution. The training
samples (z1,¥1),--- , (Tn, yn) are independently drawn from the same underlying distribution.
Since we assume that s € [1,+00), L is convex. We may choose f in (8) such that

fp,z,y) = %De(p, y)®, (16)

where ¢, > 0 is a regularization parameter.

The purpose of the e parameter in the above formulation is to obtain a sparse representa-
tion of &. In fact, this can be easily seen from (25) since the formula shows that a component
dr = 0 as long as |p(&, x) — y| < e. In this case, g in (6) becomes

(n/n)"/?

2 Jal' — ay+lal, (17

g(_aa z, y) =
where 1/s+ 1/t =1.
For the above loss function, the following leave-one-out cross-validation bound can be
directly obtained from Theorem 3.2:

Lemma 5.1 Under the conditions of Lemma 3.1, the following bound on leave-one-out error
1s valid for all s > 1:

1/s
+

n /s n n /s
ZDe(p(&[k]axk)ayk)s] S !Z Dé(p(d/axk)ayk)s Z |&kK(xk’$k)|s] .
k=1 k=1 k=1
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Proof. Note that Vé > 0:

sup Dc(p+ Ap,y) < D.(p,y) + 0.
|Ap|<4d

Let L(p,z,y) = D¢(p,y)*. The right-hand-side of equation (9) can be bounded as

n

D (De(p(&, zh), ye) + |G| K (zk, 71))°-

The lemma then follows from the Minkowski inequality. O

The generic leave-one-out regression bound in the above lemma can be computed from
the training data. In order to derive results for the expected generalization error, we shall
further investigate the behavior of this bound. Intuitively, analysis given in Section 4 suggests
that ¢ is often of the order O(1/n). Therefore when n — oo, the normalized second term
on the right hand side (by multiplying the normalization factor n='/%) converges to zero at
the rate O(n~'/*). Roughly speaking this leads to the correct convergence rate of n='/2 (as
mentioned in Section 2) for the least squares formulation where s = 2.

Similar to the analysis in Section 4, in order to obtain exact generalization bounds, we
shall start with an estimate of &. With g in (6) given by (17), we obtain from equation (25):

] = max(p(d, 7:) — il — 601 (i=1,...,n).
n
Therefore VEk:
|G |" =

Summing over k, we obtain:

3

t n
~ C R
|Gy |* < n_z E D (p(&, zk), yi)®.
k=1 k=1

Clearly the left-hand side of the above inequality measures the size of & using its ¢-norm,
and the right hand side gives a bound in terms of the training error. Therefore we have been
able to bound the size of & using training error, as suggested at the end of Section 4.

To proceed with the analysis, we consider another quantity s’ such that 1/s' =1/t+1/t',
where s',#' > 1. Using Jensen’s inequality, some simple algebra, and Hoélder’s inequality, we
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can obtain the following:

n 1/s
1 ~ S
ymax(1/5—1/57,0) [Z | K (2k, 2k | ]
k=1

n

1/s’
> |6k (a, xk)\s/]

S .

>, \dk|t] [Z K (z, «’rk)tI]
_k:1n k=1 e )
S%" [Z De(p(&; xx), yr)* ] [ZK(xk,xk)t']

Substituting into Lemma 5.1, we obtain the following leave-one-out bound:

IN

¢

IN

1/t

Lemma 5.2 Under the conditions of Lemma 3.1 with g given by (17). Consider s,t,s',t' >
1:1/s+1/t=1and 1/s' =1/t +1/t'. Then

[ZD yk)r/s [ZD (&, zx), yi)°

n

1/s
+

(15 -1/5.0)-1 [ De(p(6, z), yi)* ] !Z K(f”’“"’”’“)t’]
k=1

k=1

Note that in the above lemma, we have successfully removed the dependency of the leave-one-
out bound on &. Next, we would like to investigate the behavior of the expected leave-one-out
error, which gives the expected generalization error. In the following, for any random variable
¢, we use the more compact notation E'/*¢ to denote (E€)Y/.

Theorem 5.1 Under the conditions of Lemma 5.2. Assume further that 1/s = 1/u+ 1/v
where u,v > 1. Denote by X,, the training set {(x1,v1),-.., (Tn,yn)}. Let

1< R ,
= E Z De(p(aa xk)a yk:)
k=1

be the observed average training error. Then the expected leave-one-out error can be bounded
as

1/s N 1/s A Cn 1/u u/t gl /v
E'Q(p(a", ) < BY* Q(Xn) + — s B Q(XG) B

n v/t
ZK(xkaxk)t,] )

k=1

where E denotes the expectation over n random training samples X,,.
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Proof. Let d, = ¢,n™>(1/5=1/5"0=1 " Using Lemma 5.2 and the Minkowski inequality, we
have

IN
&
S
)
=
L
8
=
~
<
ol
~—
®
+
S
&y
T
1
[
o
)
=
—
RS
8
Eal
~
<
=
\_/
-2 I—I
1
(]
=
8
T
8
N
;l

L k=1 1 k=1 k=1
- n 11/s M n n i
A S 1 ~ s 1 !
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where the second inequality follows from the Holder’s inequality. Also note that

E ) D(p(a™, z;), y)* = nE De(p(aM, z;), yx)* = nE Q(p(al*, -)).
k=1

We thus obtain the theorem. O

The next step is to bound the training error using the error of an arbitrary function
p € H. This gives the following result. Note that the bound can be improved using mo-
ment inequalities for sum of independent variables. However this introduces another level of
complexity. For our purpose, we will use plain Jensen’s inequality for simplicity.

Corollary 5.1 Under the conditions of Theorem 5.1. Let

Qq,nzggEl/q De(p()y)+—|lp()ll :

where p denotes an arbitrary measurable function. Let
l, =1+ min(1/s,1/s") — max(1/t,1/u) — max(1/t',1/v).
The expected generalization error is bounded by

BV Q(p(a™, ) < Q1 + Q”t E'"K(z,2)",

u/t,n
where E denotes the expectation over n random training samples.

Proof. We would like to bound the three terms on the right hand side of Theorem 5.1
separately. For the first term,

EQ(X,) < inf E ZD +—||p( Xa)lI*| = Q-
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Now for any measurable function p(-), using Jensen’s inequality to bound the second term,
we obtain

n u/t

U ) u u 1 s s

Evmmwzﬂ/ggpwmmm+5ﬁw&wl
k=1 n

u/t
u InaX —Uu S S
<B'n MZ[ D) + )]

u/t
:nmax(O,l/u—l/t)El/u [De(p(aﬁ),y)s-l- 25 ||p||[2n]:| ‘
Cn

Similarly, using Jensen’s inequality, we have

n v/t n
El/v ZK($k; l‘k)t’] SEl/v nmax(v/t’—l,o) ZK(l“k,ﬂJk)v

£ k=1
<pr(UVA B K (g, 7)Y

Applying the above bounds to Theorem 5.1, we obtain the desired result. O
Corollary 5.1 can be applied with any choice of (s',') and (u,v). We may make the
following specific choice that maximizes the rate £,:

e sc[l,2]: s =s,t'=st/(t—s), u=1tand v=1. We have

El/s Q(p(éd )) Q1/5+ Ql/t (t— S/StK(.’E x)st/(t s)

e s>2: 5=t t =400, u=s5and v =+o0. We have

B Q(p(a¥, ) < Qi + 572 Qulr,, sup K (z,2).
Clearly if we let s = 1 and t = 400, then we are able to reproduce the expected

generalization error bound for absolute deviation in Corollary 4.2. With fixed ¢,, it is easy
to see that when s > 2, the asymptotic convergence rate is O(n_Z/ %), which decreases as s
increases. When s < 2, we are more tolerant to large input K (x,z) since the bound depends
on E¢s)/st K (x, 2)*/(*=%)  which becomes less sensitive to large K (x,z) as s decreases. In

addition, for smaller s, ¢ is larger, and hence the factor Q}/ﬁ (for s € [1,2], or Qiﬁ
s > 2) has a smaller impact on the bound. This means even when @, is relatively large,
we can still expect a fast convergence. All these observations imply that the formulation is
more robust when s is smaller. Note that regression using the Huber’s loss has the same
behavior as that of s = 1. This gives a theoretical justification on the robustness of Huber’s
loss function.

For s > 2, we require sup, K (z, z) to be bounded. It is clear that by choosing v < 400, we
can relax this condition to the boundedness of EK (z, z)". However, asymptotic convergence

rate reduces to O(n=2/571/?). It is also interesting to observe that the convergence decreases

or
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to O(1) as s — oo. This is not very surprising. We may consider the scenario that s = co.
Clearly the risk function () becomes the essential upper bound of |p(z) — y|: Q(p) = inf{a :
P(|p(xz) —y| > a) = 0}, which cannot be reliably estimated with a finite number of samples.
This is another way to see that large s is very sensitive to outliers.

We shall now consider the least squares regression formulation where s = 2. Assume
that K(z,x) is bounded. Let A\, = 2/c, in (4), Corollary 5.1 (with the above mentioned
parameter choices of ' = s,t' = st/(t — s),u = t and v = t') implies that the expected
generalization error with n — 1 training data can be bounded as:

2
L e A R
Similarly to (14), the above bound implies a O()\%n) learning complexity. As mentioned in
Section 2, if inf,c 5 Q(p) can be achieved by p* € H, then we can let A\, = O(1/4/n) to obtain
the correct convergence rate (to the minimum value Q(p*)) of the order O(1/4/n). Similar
to the discussion in Section 4, our result compares favorable to the least squares bound of
the form (15) in Bousquet and Elisseeff (2002), which leads to the best achievable rate of the
order O(n~/*). One also note that our results can be further improved when the problem
is noise-free: Q(p*) = 0. Here we may let A\, = O(1/n) to obtain an expected generalization
error of the order O(1/n). The best achievable rate in Bousquet and Elisseeff (2002) based
on (15) is still no better than O(n~'/*) under this scenario.

Next we would like to consider a choice of ¢, so that the expected generalization error
converges to the best approachable error when n — co. For simplicity, assume 1 < s < 2,
s' = s, and B9/ K (g, £)*t/(t=9) is finite. We also restrict p such that p € H in the estimate
of Q1,,. This gives the following results:

o inf,cy By y Dc(p(z),y)* = 0: if we pick ¢, — oo such that ¢, = O(n), then
lim £ E,, D.(p(&,z),y)* =0.

n—oo
o inf,cy E;y Dc(p(z),y)* > 0: we pick ¢,, = oo such that ¢, = o(n), then
lim E Eyy De(p(&,7),y)* = inf Ey, De(p(@, 7),y)".
pE

n—oo

In the above, the first is the noiseless case, and the second is the noisy case. However,
in both cases, we do not need to assume that there is a target function p € H that achieves
the minimum of inf,cy E, , |p(z) — y|*. For example, we may have a function p(z) such that
E,y|p(x) — y|* = infpen Eyy [p(z) — y|*, but p(z) does not belong to H. The function may
lie in the closure of H under the L;-topology. For some kernel functions, this closure of H
may contain all continuous functions (and Lg). In this case, Corollary 5.1 implies that when
n — 0o, the kernel learning formulation (6) is able to learn all continuous target functions
even under observation noise. We call this property universal learning.

The leave-one-out analysis can also be used to derive approximation bounds for kernel
methods. For function approximation, we are interested in the best possible L, approxima-
tion error of an arbitrary function using n terms of kernel expression:

An(py) = ing;/s ip(a, z) — pa(z)]’,
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where p, is the target function, and p(«,z) is given by (5). We may produce an approx-
imation by solving (8) with f(p,z,y) = cu|p(a,z) — pu(x)|°. It is clear that A,(p.) <
EY*E, |p(&!*), ) — p.(x)*. Applying Corollary 5.1, we obtain

. § 2 \i/s , Cn S 2 \1/t l/v v
Aues(p) < 308 () + () B K )

cn>0

 [slnle,
N 2ntn

EV'"K(z,z)v.

Again by maximizing the rate ¢,,, we obtain the following approximation bounds:

e sc[l,2]: sy =s,t' =st/(t—s), u=1tand v=1t. We have

Sl ]
Anfl(p*) S TE(t 5)/StK(.’L', x)st/(t s).
n

e s>2: 8=t t =400, u=sand v=4o00. We have

This shows that the minimum-norm interpolation quantity |[p.||j,j characterizes the rate of
approximation using kernel expression (5).

6 Leave-one-out analysis for some binary classification
formulations

In this section, we study some binary classification formulations using ideas similar to that
given in Section 5. The following result is a direct consequence of Theorem 3.2. A similar
bound can be found in Jaakkola and Haussler (1999).

Lemma 6.1 Under the conditions of Lemma 3.1, the following bound on leave-one-out clas-
sification error is valid:

> Ip(a, zp), ) < I(p(é, ) — |y K (g, 71), Y-
P k=1

The above bound can be regarded as a margin style error bound. Although useful com-
putationally, it does not provide useful theoretical insights. In this section, we show how to
estimate the right hand side of the above bound using techniques similar to our analysis of
regression problems. One difficulty is the non-convexity of the classification error function.
In practice, people use convex upper bounds of I(p,y) to remedy the problem. There are
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many possible choices. In this section, we will consider powers of D, (p,y) = max(0,1 — py),
which are related to support vector machines. Our goal is to find a function p(z) to minimize
the expected loss Q(p(-)) = E,,f(p(x), z,y) where E denotes the expectation with respect
to an unknown distribution. The training samples (z1,¥1),. .., (Zn, ys) are independently
drawn from the same underlying distribution.

The following lemma plays the same role of Lemma 5.1.

Lemma 6.2 Under the conditions of Lemma 3.1, the following bound on the leave-one-out

error s valid for all s > 1:

1/s
_+_

n 1/s n n 1/s
ZD+(P(d[k]a$k),yk)S] < [Z D (p(&, ), yr)* > ‘d’kK(xkaxk)‘S] :
k=1 k=1 k=1

Proof. Note that D, (p+ Ap,y) < D.(p,y) + |Ap|. The rest of the proof is the same as that
of Lemma 5.1. O

To further investigate theoretical properties of support vector machine type losses, we
need to bound the right hand side of Lemma 6.2 in a way similar to the regression analysis.
In particular, we consider the following formulation for solving the classification problem,
with f in (8) chosen as

Cn s
where ¢, > 0 is a regularization parameter, and 1 < s < oo. In this case, g in (6) becomes
Cn/n —t/s
9(—a,z,y) = %Ia\t —ay, (ay=>0) (19)

where 1/s+ 1/t = 1. Note that if s = 1, then ¢t = +o00. Equation (19) can be equivalently
written as:

—ay if ay €10, c,/n|,
g(o,z,y) = { .[ /ml (20)
+o00  otherwise.

With ¢ in (6) given by (19), we obtain from equation (25):
N Cn A s—
xe = max(1 = plao 2 0 (k=1,... ) 1)

Note that if s = 1, then the right-hand-side of equation (21) is not uniquely defined at
p(&, x;)y; = 1. The equation becomes &;y; € [0, c,/n] in this case. Similar to the regression
analysis in Section 5, we obtain Vk:
t
~ |t Cn ~ s
|G| = ED+(P(04; Tk ), Yk)®-

Summing over k, we obtain
n Ct n
D lanl < n—rz > Dy (p(é, zx), yk)°-
k=1 k=1

Clearly we can use the same derivation as that in Section 5, and simply replace the symbol
D, by D,. This leads to the following counterpart of Lemma 5.2:
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Lemma 6.3 Under the conditions of Lemma 3.1 with g given by (19). Consider s,t,s',t' >
1:1/s+1/t=1and 1/s" =1/t +1/t'. Then

1/s 1/s

Z Dy (p(, ), ye)* +
k=1

< lzjm@(&,m,yk)s

¢

. Yt p
¢, pmax(1/5=1/5,0)-1 [Z Dy (p(&, zx), yk)S] [Z K, mk)tl]
k=1 k=1

Using the same proof of Theorem 5.1, we obtain the following bound on expected gener-
alization error.

Theorem 6.1 Under the conditions of Lemma 6.3. Assume further that 1/s = 1/u+ 1/v
where u,v > 1. Denote by X,, the training set {(x1,y1),--., (Tn,yn)}. Let

Q(p()) = Ew,yD-F(p(&[k]’ .I), y)s

be the expected true error of a predictor p(-), and let

Q) = 37 D), )’

be the observed training error. Then the expected leave-one-out error can be bounded as

n v/t
zKuk,xk)ﬂ] |

k=1

1/s AIK] /s n
E7FQ(p(at™, 1)) < BV Q(Xn) + min(1/s,1/5)+1/s

El/u Q(Xn)u/tEl/v

where E denotes the expectation over n random training samples X,,.
The proof of the following result is the same as that of Corollary 5.1.

Corollary 6.1 Under the conditions of Theorem 6.1. Let

. =inf EY9 |D Ly) + 5
Qq, in +(p(7),y) 2.

q
)]
where p denotes an arbitrary measurable function. Let
l, =1+ min(1/s,1/s') — max(1/t,1/u) — max(1/t',1/v).
The expected generalization error is bounded by
BV Q(p(a™, ) < QU + —-Quf, BV K (@)

where E denotes the expectation over n random training samples.
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Similar to the regression analysis, we obtain the following bounds from Corollary 6.1:

e se[l,2]: s =s,t'=st/(t—s), u=tand v=1t. We have

' Q(a%, ) < Qi + Tl B K (2,2)/ ),

e s>2: =t t =400, u=sand v =4+o00. We have

BV Q(p(al, ) < QV° + =

n2/s

Ql/t sup K (z,x).

s/t,n

Formulations with s > 2 can be very sensitive to outliers. However they can still be
useful when the data is nearly separable. In the general case, if we want to choose ¢,, so that
the expected generalization error converges to the optimal error, then cf/ 2= o(n). This can
be naturally compared to the exponential loss formulation in Corollary 4.3 where we require
cn exp(v/8c, M) = o(n). This shows that we require ¢, to grow slowly when we use a loss
function that heavily penalizes outliers.

The case of s =1 corresponds to the support vector machine formulation. In this case if
there exists some p € H such that F D, (p(z),y)* ~ 0 and K(z,x) is bounded, then we can

use another method to estimate the size of o which leads to a better bound. We multiply
(21) by 1 — p(&, ) yx and sum over k to obtain

n n
D law] = drye(l = p(é ax)yr) + llp(a, )|
k=1 k=1

. Cn ~ s— ~ ~
=3 % max(1 - p(a, r)ys, 0" (1 = pla, we)ue) + [Ip(a, ) I
k=1

~ Cn . s ;
<320, (0@ 1), w0 + lo(@ )1
k=1

This implies

n A n Cn A , R
D lowK (w,ai)| < | 32 7Dy (p(d 7), 3s)* + Ip(@ )| | sup K (o, 7). (22)
k=1 k=1

This estimate of & can be compared to the corresponding estimate used in Corollary 6.1
(and Corollary 4.2) with s = 1: there we used an estimate of sup, |&x| < ¢,/n, which leads
to a bound Y ,_, (K (zg, zx)| < cu/nd i K(zg, k). If ¢, is large, then the estimate
given in (22) is better when Y ;| D (p(&, 2k), yx)* is close to zero and sup, K (z,z) is well
bounded. Using (22), we obtain the following result from Lemma 6.2:

Theorem 6.2 Under the conditions of Lemma 8.1 with g given by (20). Let M = sup, K (xy, x)"/?,
then

cnM?

)ZD+(p(d’axk)ayk) + ||lp(&, ) |2 M>.

k=1

29



Taking expectation over the training data, we obtain

Corollary 6.2 Under the conditions of Lemma 8.1 with g given by (20). Let M = sup, K (z,z)'/?,
then

) max(n, ¢, M?) + c, M? . 1
ED+(p(a[k}7$k)7yk) < ( ) inf Em,yD-i—(p(x): y) + i”p“%n] ’

n (")

where E denotes the expectation over n random training samples. p denotes an arbitrary
measurable function.

If the problem is separable, Theorem 6.2 implies a leave-one-out bound of

n + 2¢, supy, K (zx, z)

Ip(Xa)II”

n
ZD+(p(d[k]7xk)7yk) S 9
Cn
k=1
for all function p such that p(zx)yx > 1 (K = 1,...,n). We can let ¢, — 400, then the
formulation becomes the optimal margin hyperplane (separable SVM) method. In this case
the above analysis implies the following leave-one-out classification error bound:

> (@™, ). ur) < (@ ) sup K (o, ).
k=1

This bound is identical to Vapnik’s bound for optimal margin hyperplane method in Vapnik
(1998). It shows that the optimal margin method can find a decision function that has
classification error approaches zero as the sample size n — 400 when the problem can be
separated by a function in H with a large margin. In addition to this result of Vapnik, a
bound similar to Theorem 6.2 has also appeared in Joachims (2000).

We can further consider the case that the problem is separable but not by any function in
H (or not by a large margin). As we have pointed out in Section 5, there may be a function
p ¢ H (but say, p belongs to H’s closure under the L; topology) so that p(z)y > 0 almost
everywhere. We can assume in this case that

inf E,, max(1l — p(z)y,0) = 0.
pcH
It is clear from Corollary 6.1 that the optimal margin hyperplane method may not estimate
a classifier p(&,-) that has expected classification error approaches zero when n — +o0.
That is, the method is not universal even for separable problems. This is not surprising
since when n — o0, ||p(&, -)|| may also go to +oo at the same rate of n. On the other hand,
by Corollary 6.1, with regularization parameter ¢, = O(n), lim,_, 1o E;,I(p(&, x),y) = 0.
This means that the soft-margin SVM with fixed C = ¢, /n is a universal learning method
for separable problems. A similar conclusion can be drawn from Corollary 6.1 for 1 < s < 2.
Finally we shall point out that although our end goal is the classification loss E, , I (p(z),y),
it is desirable to minimize a convex risk in the kernel formulation, which not only is computa-
tionally more efficient, but also reduces the variance associated with the estimation. Results
in this section show that E,,D.(p(&, z),y)® achieves the best possible approachable value
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in H as n — +oo. If H is dense in the set of continuous functions in a compact set under
the uniform norm topology, then it can be shown (for example, see Zhang (2002c)) that a
function that approximately minimizes E, ,D, (p(&, z), y)* will also approximately minimize
E;,I(p(z),y) among all Borel measurable functions. This implies that results obtained in
this section can also be used to establish universal learning results for non-separable prob-
lems, though we only minimize a convex upper bound of the classification error function
instead of the classification loss itself. This connection indicates that it is important to
study the expected generalization error with respect to the D, (p(&,x),y)® loss even if our
purpose is to minimize the classification error.

7 Summary

In this paper, we derived a general leave-one-out approximation bound for kernel methods.
The approximation bound leads to a very general leave-one-out cross-validation bound for
an arbitrary loss function. In addition, we have also studied variance bounds for leave-one-
out estimates. Our bounds depend very weakly on properties of the underlying kernel. For
example, they do not depend on the eigen-decomposition structure of the kernel. On one
hand, this means that bounds we have obtained are very general. On the other hand, this
also indicates that it might be possible to improve our analysis for specific kernels by taking
theirs structures into consideration.

We have applied the derived bound to some regression and classification problems, which
demonstrated the power of leave-one-out analysis. In fact, to the best of our knowledge,
the expected generalization results obtained from our analysis are the best available bounds
for general kernel learning machines. In addition, our bounds reflect both learning and
approximation aspects of the underlying problems. Based on these results, we are able to
demonstrate universal learning properties of certain kernel methods. Our analysis also sug-
gests that even for noiseless problems in regression, or separable problems for classification,
it is still helpful to use penalty type regularization. This is because in this case we can choose
the regularization parameter as ¢, = O(n) to obtain universal learning methods.

In this paper, we show that the minimal interpolation norm ||p(z)||f, of a function p(x)
determines the rate of learning p(z) with the corresponding || - || kernel function. However,
we do not investigate the behavior of ||p(x)||j) for any specific function class and any specific
kernel formulation. It will be interesting to study such issues, which may lead to useful
insights into various kernel formulations.

A Properties of kernel representation

We prove Proposition 3.2 and Proposition 3.3.
Proof of Proposition 3.2. First we consider the situation that p(X,) can be represented
as
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Define s = (a’'G(X,)a)"/?, then Va,
p(X,) e =a"G(X,)a < s(a’G(X,)a)' 2.

The equality can be achieved at o = @. This shows that s = ||[p(X,)]|-
Now assume that p(X,,) is not in the range of G(X,). Using elementary linear algebra,
we can write

p(Xn) = G(Xn)a+ B,

where 5 # 0 is in the null space of G(X,): G(X ) = 0. This implies that 87p(X,) =
BTG(X,)a + T8 > 0, and (B7G(X,)B)/? = From Definition 3.2, we must have
[P(Xn)|| = 400. O

Proof of Proposition 3.3. To prove the first part, we consider the orthogonal projection
po of p onto the subspace spanned by function p;(z) = K(x;,z). Proposition 3.1 implies that
po(z;) = p(z;) foralli =1,... ,n. Let X;, = {z1,...,x,}, then Proposition 3.2 implies that
[P(X)[l = llpoll < [Il-

To prove the second part, denote X; = {z1}. If K(z1,21) = 0, then let py(-) be the
orthogonal projection of p(-) onto the subspace spanned by function K (x1, ). Proposition 3.1
implies that p(z1) = po(z1) = 0. If K(x1,21) > 0, then ||p(X))| = |p(21)|/K (z1, 21)">.
Therefore using the first part, we have |p(x1)|/K (21, 21)Y? < ||p(-)]]. O

B Proof of Theorem 3.1

To prove the theorem, we first note that a solution of (8) must be a solution of

5() = arg_min Zf (@), w) + 3 IpO)I?| (23)

p()EHX,,

where Hy, is the subspace of H spanned by K(z;,-) (i =1,...,n). This is because for any
p € H, by Proposition 3.1, let px, be the orthogonal projection of p onto the subspace X,
then p(z;) = px, (x;) for all ¢ and ||px, || < ||p||, with the equality holds only when p € Hx, .
Therefore px, has a smaller primal objective value than p if p ¢ Hx, . This shows that any
solution of (8) can be written as p(z) = >, &K (z;, z) for some é.

Now, let & be a solution of (6). Since & achieves the minimum of L, (a), we have (see
page 264 in Rockafellar (1970)) 0 € 0,,L,(&) for all i (the sub-differential is with respect to
each ;). By Theorem 23.8 in Rockafellar (1970), for each i, we can find a subgradient of
g(ei, i, y;) at &; with respect to «; such that the following first order condition holds:

n
—V1g(—@i,$i,yi)+ZOA!J'K($Z',.’IJ]') =0 (Z: 1, ,’I’L), (24)
7j=1
where Vg denotes a subgradient of g with respect to the first component. By the relationship
of duality and subgradient in Rockafellar (1970), Section 23, we can rewrite (24) as

1
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Where V f(v,b, c) denotes a subgradient of f with respect to v. Now multiply the two sides
by K(z;,z¢), and sum over i, we have

n . 1 n .
i=1 i=1
For any «, we multiply (26) by oy — &g, and sum over £ to obtain:
n A . 1 n A .
> ai(p(a, i) — plé, ) + - > Vi (&, 3:), i yi) (P 2) — p(, ) = 0. (27)
i=1 i=1

Using the definition of subgradient, (27) implies

n

o0 )P~ llp(@, ) + = D27l 7, 76, 9:) — F(p(6,2:),2,1) > 0.

1=1

That is, p(&, -) achieves the minimum of (23).
Since the above steps can be reversed when the Gram matrix G(X,,) is non-singular, the
converse is also true.

C Proof of Lemma 3.1

For notational simplicity, we assume k& = n. Using (24), we have for all i <n — 1:
—Vi19(—64, i, ys)( k —&;) + Za] (zi, z5)( [k] — ;) = 0.

By the definition of subgradient, we have

k] (k] )

which can now be equivalently written as:
k A A k
g a’zaxzayz Za] xlix] [ ) _ai) Sg(_a’g ]al'iayi)-

Summing over i, we have

n—1 n

. . . . 1 ~[K] ~
S o=t m) = D K @26l - ao)| + 5303 alalK (i, 0y)
=1 j=1 i=1 j=1
1 n—1n-1
<Zg Z ,xz,y, -+ § Z&Ek]&gk]K(xz,x])
i=1 j=1
1 n—1n-1
<Zg au%;% + 5 &z@jK(xz,xj)
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The second inequality above follows from the definition of &/¥l. Rearrange the above inequal-
ity, and denote alfl = 0, we obtain:

1o~ NEPRYN L
5 2> K (w2) (@ — d)(a) - dy) <

i=1 j=1

D Variance style concentration inequality

We prove Lemma 3.2. Given {z1,...,z,}, we denote by E; expectation with respect to the
variables z;,1,... , 2y, conditioned on 2z, ..., z;. Now, we have
n
Z=EZ+Y (EZ-E\2). (28)

i=1
Let Z; = E;Z — E; 1Z, then Z; is a function of {z1,..., 2z} and E; ;Z; = 0. Obviously for
j < i, we have

This implies that E >, Z;]*> = E Y. | Z?. Note that by definition EyZ = EZ, we thus
have from (28) that

Var(Z) = E [i Z) = Ei(EiZ — B 1 7)%

i=1
Now use E,, to denote the expectation over z;, conditioned on all other variables, we obtain
from Jensen’s inequality:
E(E;Z — E;_1Z) <EE{(Z — E,.7)?
<BlE,(Z - E,Z)*+((2Y) - E,,Z)"]
—E(Z — ZW)2,

This shows that

Var(Z2) = EY (BiZ - E1Z)* < E Y (Z - Z0).
=1

=1
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